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A unified picture of the linear dynamics of rotating fluids with given arbitrary 
stratification is presented. The range of stratification which lies outside the region 
of validity of both the theories of homogeneous fluids, as .c E8, and the strongly 
stratified fluids, ~ T S  > Ei, is studied, where aS = vag AT/KQ2L and E = v/QL2. 
The transition from one dynamics to the other is elucidated by a detailed study 
of the intermediate region E3 < US < Ei.  It is shown that, within this inter- 
mediate stratification range, the dynamics differs from that of either extreme 
case, except in the neighbourhood of horizontal boundaries where Ekman layers 
are present. In  particular the side wall boundary layer exhibits a triple structure 
and is made up of (i) a buoyancy sublayer of thickness ( t ~ S ) a E i  in which the 
viscous and buoyancy forces balance, (ii) an intermediate hydrostatic, baroclinic 
layer of thickness (as)* and (iii) an outer El-layer which is analogous to the one 
occurring in a homogeneous fluid. In the interior, the dynamics is mainly con- 
trolled by Ekman-layer suction, but displays hybrid features; in particular the 
dynamical fields can be decomposed into a ‘homogeneous component’ which 
satisfies the Taylor-Proudman theorem, and into a ‘stratified component ’ which 
is baroclinic and which satisfies a thermal wind relation. In all regions the struc- 
ture of the flow is displayed in detail. 

1. Introduction 
In a recent paper (Barcilon & Pedlosky (1967), hereafter referred to as B & P) 

we examined the linear theory for steady, rotating, stratified fluid motions. That 
analysis was pivoted, in a crucial way, on the assumption that the stratification 
was substantial, i.e. that the internal, rotational Froude number was order one. 
The results of the analysis could therefore not be directly applied to weakly or 
non-stratified rotating fluids. Consequently, it was not clear how the results 
would merge with those of the linear theory of homogeneous, rotating flows as the 
stratification is decreased. 

I n  the present paper, we propose to examine how this transition occurs and to 
give a unified picture of the linear dynamics of rotating fluids which ties the 
results of B & P to those of the theory of homogeneous fluids. Because of the 
singular nature of the dynamics, manifested by the existence of spatial non- 
uniformities within the fluid (the various boundary layers), it  is not possible to 
find useful, asymptotic solutions of the governing equations which are uniformly 
valid in the parametric measure of the stratification strength, S. As the homo- 
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geneous limit is approached for a fluid of small viscosity, the resulting dynamics 
will depend on the relation between S and the Ekman number E which is the 
parametric measure of the viscosity. That is, in the double limit X --f 0, E + 0 it  
is necessary to specify a relation between E and X. In fact, three adjacent regions 
in parameter space emerge, namely (i) FS < EQ, (ii) EQ < ITS < E*, and (iii) 
as > E* (r is the Prandtl number); and the character of the motions differs 
greatly in each region. In region (i), i.e. for stratifications smaller than EQ, we shall 
show that the fluid behaves essentially as if it were homogeneous; region (iii) 
corresponds to the case of strongly stratified fluid flows already examined in 
B & P, while, in the intermediate region (ii), the dynamics will have a hybrid 
nature, exhibiting features of both homogeneous and stratified fluids. Since the 
two extreme regions are well understood, in the present paper we shall focus our 
attention on the intermediate region Ed < FS < E*. 

As in B & P, we shall restrict our attention to steady motions and to the case 
where the rotation S2 and gravity g are antiparallel. Furthermore, we shall only 
consider axisymmetric flows within cylindrical containers of circular cross- 
section. These last restrictions are made for the sake of simplicity in presentation 
and could be relaxed without altering most of our results. 

2. Formulation 
The equations governing the steady motions of an incompressible, viscous, 

heat-conducting fluid, written in a co-ordinate frame rotating with angular 
velocity !2 about the vertical are 

1 Q2 
q . vq + 2nE x q = - - v p  - g k  + - v 1E x r 12 + v V2q, 

P 2 

v.q = 0, 

q.VT = K V T ,  

p = P o [ 1 -  a(T - 
where q, p ,  p and T are respectively the velocity, pressure, density and tempera- 
ture of the fluid at a point r ;  v and K are the constant kinematic viscosity and 
thermometric conductivity, 6 is a unit vertical vector. The state equation is 
assumed to be a linear relation between T and p, where po and To are constant 
reference values of the density and temperature. 

Assuming further, as in B & P, that the Froude number Q2L2/g is small, the 
equilibrium density and temperature are linear functions of height, viz. 

Ps  = Po[l-aAT(z/L)I, 
T,  = To + (AT) z/L, 

where L is the height of the container and AT is the basic vertical temperature 
difference (AT 2 0). Denoting by 6 the departure from the state of rigid rotation 
and linear vertical stratification, we introduce dimensionless variables (denoted 
by asterisks) as follows: 

Tg; r = Lrg; 
EQ2L 

T = T,+- 
a9 

p = po  -pogLz* - +pp,gLa AT24 + ep0 Q2L2~g .  

q = d2Lqg; 
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Assuming that the Rossby number F is small, the dimensionless equations of 
motion are 

where the asterisks have been dropped and E = v/12L2 and B = u/K  are respec- 
tively the Ekman and Prandtl numbers; while S = aATg/Q2L represents a mea- 
sure of the stratification, and can be thought of as a rotational Richardson 
number. It should be noted that S and u enter in the equations of motion only in 
the combination cS ,  which will be referred to as the stratification. 

We shall assume that the flow is mechanically driven, say by a differential 
motion of the upper and/or lower boundaries, and that the heat flux through all 
the walls due to the motion is zero, i.e. 

G.VT = 0 (2.41 

on the boundaries. This boundary condition is necessary in order to include in our 
analysis the limiting case of a homogeneous fluid. Indeed, for S = 0, the heat 
equation (2.3) with (2.4) imply that T is a constant. Alternatively, we could 
replace the no-flux condition (2.4) by one requiring that T is a constant on the 
walls. The no-flux condition however simplifies the details of the results. The 
dynamical boundary conditions are of the form 

q = qB(r)$, on z =  0; 

q = qT(r)$,  on z = 1; 

q = 0, on r = a ;  

where 0 is a unit circumferential vector and a is the dimensionless radius of the 
cylinder. 

Although no formal asymptotic expansion in powers of E will be performed, 
we shall make use of boundary-layer techniques. As in the case of both homo- 
geneous and strongly stratified rotating fluids, three distinct fluid regions exist: 
(i) Ekman layers along horizontal boundaries; (ii) side wall boundary layers; and 
(iii) an interior region. Whenever they are present the structure of the Ekman layer 
is independent of the size of the stratification, since the essential balance of forces, 
viz. Coriolis us. viscous, involves horizontal motions which are unaffected by the 
stratification. We shall therefore not discuss the Ekman layers further and make 
use, when necessary, of the fundamental relation between the vorticity and the 
vertical velocity at the edge of the Ekrnan layer, i.e. that the Ekmanlayer suction 
is 

where 
qT0, on x =  I; 

qs$, on z = 0. 
qwal l  = 

One can now see that CTS = EB is a critical stratification. Two distinct mechan- 
isms can control the size of the interior vertical velocity, the diffusion of heat and 
theEkman-layer suction. From the heat equation we see that the interior vertical 
velocity is at most O(E/cS),  while the vertical velocity pumped by the Ekman 
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layers is O(E4). Consequently, if c ~ S  > E), the stratification will inhibit the 
Ekman-layer suction (and in fact will eliminate the O( 1) Ekman layers), as was 
the case in B & P. However, if c ~ S  < EQ, the effects of the Ekman layers will 
dominate. Therefore the role of the Ekman layers (and their existence) will differ 
according to whether CrS/E* 1. 

Postponing a discussion of the second critical stratification uS = O(E8) until 
we consider the side wall boundary layer, let us now turn to the dynamics of the 
interior region in the case uS < EB, which is the parameter region of interest here. 

3. Interior region 
To O(E), the interior zonal flow is in geostrophic balance. As a result the 

pressure is O( 1) and the vertical momentum equation implies that the tempera- 
ture is at most of O( 1). If T were O( l), then the vertical velocity obtained from the 
heat equation would be O(E/uS), i.e. greater than EQ. However, if w > O(E*) 
equation (2.6) would imply it vanishes on x = 0 , l  and, since w is z-independent 
according to the continuity equation (zd = O(E)),  w would be identically zero. We 
therefore infer that w = O(E4) and consequently that T is O(uS/E*). We write 
for the interior 

U. = O(E), 

CTS 
v = v , + j j p +  ..., 

The O(1) and O(uS/Et) interior equations are 

and 
(3.3) 

To lowest order, the interior dynamics is identical to that of a homogeneous 
fluid. As soon as US < E )  the dominant part of the interior motion becomes two- 
dimensional, with p ,  and hence v, independent of x ;  the Taylor-Proudman 
theorem is satisfied and the interior O( 1) dynamics is consequently completely 
controlled by the Ekman-layer suction. 

The O(uS/Eh) flow is, however, affected by the temperature deviations pro- 
duced by the O(E4) Ekman-layer suction. In  terms ofp, the O(uSIE4) equation is 

vzp ,  = 0, (3.4) 
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which could have been deduced from the fundamental interior equation (3.13)‘ 
of B & P by formally setting US = 0. The solution for the O(crS/Ei) variables can 
be expressed as follows: 

where x is a harmonic function to be determined. Defining #T and $B such that 

q T , B  = it x v $ T , B )  

we can write the Ekman suction conditions (2 .6)  as 

where 

Since xzB = 0 on z = 0’1 from (2 .4) ,  we see that V?x = 0 on z = 0’1 for x is a 
harmonic function and that in turn 

x = const. on z = 0’1. 

Therefore wO = iv?($T - $B),  

wi = -&V?($T-$B)’ 

P O  = 3($T + $B) .  

Making use of (3.8) and (3.5) we find that 

(3.10) 

which displays the hybrid nature of the flow. Indeed (3.10) suggests that we look 
upon w as being made up of an O(1) ‘homogeneous’ component, which is z-in- 
dependent and equal to the local average of the zonal velocities of the upper and 
lower boundaries, and of a ‘stratified’ or ‘ baroclinic ’ component. 

The various ‘stratified components’ are only known to within a harmonic 
function x which satisfies the boundary conditions (3.7). In  order to complete the 
interior problem by specifying a boundary condition for x at r = a, we must 
examine the side wall boundary layer. 
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4. Side wall boundary layer 
Before we derive the equations valid inside the side wall boundary layer we can 

anticipate some of the results by means of heuristic arguments and of our know- 
ledge of the dynamics of the extreme cases for the homogeneous fluids (Stewart- 
son layers) and for the strongly stratified fluids (buoyancy layer). 

In  both extremes the zonal velocity remained in geostrophic balance : 

2v = Pl., (4.1) 

2~ = Ev,,. (4 .2)  

while in the zonal momentum equation Coriolis and viscous forces balance : 

In  the vertical equation of motion the pressure gradient, the buoyancy and the 
viscous forces might be comparable. Including all such effects a priori, we get 

0 = - p z + T + E w , .  (4.3) 

Finally the continuity and heat equations should be 

u, + w, = 0,  

~ S W  = ET,,. 

We can postpone scaling the dependent variables by working with a single equa- 
tion for a single field, say v ,  namely 

which is a generalization of the equations for the Stewartson and buoyancy 
layers. Indeed, whenever the first and third terms in (4.6) are comparable we 
recover the equation for the Stewartson Ei-layer. This balance is possible only for 
stratification, aS < E),  which emerges as the second critical stratification. For 
aS > E),  the second term in (4.6) is no longer negligible and we anticipate a 
balance between the first and second terms in (4 .6 )  yielding a boundary layer 
whose thickness is O((aX)-sE*), i.e. thicker than E:. This observation is import- 
ant since we are now entitled to use the Ekman-layer suction conditions (2.6) at 
the top and bottom boundaries within the side wall boundary layers. Making the 
usual boundary-layer approximations, these conditions can be written in terms 
of v alone as 

4E'2vz5 ( E  E2-++Sv  ) = O  at z = & + & .  (4 .7)  

We can now look for solutions of (4.6)-(4.7) of the form 

v = f(x) exp { - P(a - r ) } .  

Equation (4 .7 )  will then provide a pair of characteristic equations for /3 and hence 
will yield the possible boundary-layer thicknesses which will be O(p-l). These 
characteristic equations are 

( r ~ S + E ~ / 3 ~ ) 4 [ 2 / 3 E 4 +  (aS+E2/34)4tan$/3(aS+E2/34)%] = 0,  ( 4 . 8 ~ ~ )  

(4.86) (ah' + E2P4)9 [ - 2@E* tan k/3(ah'+ E2P4)4 + (ah' + E2/34):] = 0. 
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Within the range of stratification under consideration, E% < as < E*, it is easy 
to verify that the side wall boundary layer will have a triple scale structure with 
sublayers of thickness E),  (d)* and (vS)-BE*. 

Making use of this information, let us go back to the equations of motion and 
investigate each of these sublayers separately. Note that, since the interior veloc- 
ity is composed of a ‘homogeneous component ’ of O( 1 )  and a baroclinic or ‘strati- 
fied’ component of O(aS/E*) and since both components must be adjusted to 
zero on the side wall by the boundary layers, we must obtain the boundary-layer 
fields correctly to O(uSIE4). 

The E )  layer 

Starting with the thickest layer, let us introduce a stretched variable 6 defined as 

(4.9a) 

and let us scale the various fields which are corrections to the interior fields as 

- as- 

I ,  as - as- 
Et( E* 

T=- T+-Tl+ ... , 

(4.9b) 

where the constant A,, introduced into the co-ordinate stretching (4.9a) will be 
determined by ensuring that the boundary-layer expansions (4.9 b)  are tpiformly 
valid in f to order aS/E*. 

To the lowest order the equations of motion become 

(4.10) 

i.e. they are identical to those describing the outer Stewartson layer for homo- 
geneous fluids ; while the induced temperature is computed from the heat equa- 

(4.11) 
tion, 

As in the homogeneous case, p is independent of z and hence both U and V are 
z-independent. However, in the next-order correction, the pressure gradient jib 
is balanced by the buoyancy of the lower-order temperature, viz. 

- 
TC6 = W. 

PlZ = T, 
whereas in the homogeneous case it would be balanced by the viscous stresses and 
be of higher order. As a result the analogy with the homogeneous E$-layer is valid 
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only to the lowest order. Omitting certain calculations we derive the following 
expressions for the various Et-layer fields correct to O(cr2X2/E) : 

24 

48 

48 

(4.12) 
where M and N are arbitrary constants. 

Hydrostatic layer 

The next thickest layer, the hydrostatic layer with thickness (crS)i, shares many 
of the physical features of the Et-layer. The vertical momentum equation is still 
hydrostatic, but the buoyancy force for this layer is as large as the vertical pres- 
sure gradient. The layer can be extracted by balancing the last two terms in (4.6). 
In fact, if the last two terms in (4.6) are balanced, and correspondingly the second 
term in (4.7) is dropped, the resulting Simplified eigenvalue equation yields both 
the ES-layer, as the fist mode, and the hydrostatic layer as all the higher modes. 

Using itr caret to denote the various correction fields within this boundary layer 
and defining a stretched variable 

y = (mS)-4(a-r), 

the boundary-layer equations are 

- 20 = f+, 242 = 3qq, 
0 = -%+!P, hq = a,, f3 = !Pqq, 

(4.13) 

where the correction fields have been scaled in the following way : 

(4.14) 

The Ekman suction condition (4.7) reduces t o  a = 0 on z = 0 , l  so that a conveni- 
ent representation of the caret fields are: 

I u = Eta,  v = ~ ~ s E - 4 3 ,  w = (vS)-*E)a, 

T = (gS)%E-*P, P = (~.S)#E-afj. 

I 1 "  a = - -  x A,, cos nnz exp ( - Snny), 
2 n=l 

I cos nnz exp ( - 2nny),  

m 

n=l 
f3 = C A ,  sin nnz exp ( - Bnny), 

(4.15) 
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These expressions for the (a&)*-layer fields are reminiscent of those for the Ef- 
layer on account of their vertical structure. It is interesting to observe that, 
as crS approaches the critical stratification E3, the thickness of the (as)*-layer 
approaches Ef. However, the fact that this layer is hydrostatic implies that the 
dynamics of the Ef-layer cannot be completely represented by only the limiting 
dynamics of the (crS)*-layer as US+ Ef. 

Buoyancy layer 

The most narrow layer is the buoyancy layer. The layer is so thin that the viscous 
stresses in the vertical momentum equation become as large as the buoyancy 
forces while the vertical pressure gradient becomes negligible. The thickness of 
the layer is O(E*(crS)-i) and we showed in B & P that this was the only side wall 
boundary layer when crS = O(l), i.e. for strong stratification. Introducing the 
appropriate stretched variable 

p = (aS)*E-$(a-r), 

and denoting the correction fields in the buoyancy layer with a tilde we write 

(4.16) 
u = E*6, v = (vS)-*E*v", 

w = (cTS)*$~, T = (gS)g!P, p = (~S)-pEf j ,  

yielding as the governing equations for the buoyancy layer 

(4.17) 

Since each of the three sublayers can carry as vertical mass flux of O(Et), it 
therefore follows that the vertical velocity in the buoyancy layer (which is the 
thinnest) will be the largest and hence must vanish at the wall. As a result we 
deduce from (4.17) that: 

(4.18) 

$3 = A(z)e-p/d2sinp/J2, 

!P = A(z)e--pl42cosp/J2. 

It is worth while noting that, as crS approaches EP, the second critical stratifica- 
tion, the non-hydrostatic buoyancy layer widens into a layer of thickness E), 
merging with the (osS)*-layer, becoming the non-hydrostatic Stewartson Ef- 
layer. 

We are now in a position to correct the interior fields so as to satisfy the various 
boundary conditions at  the side wall and, hence, to obtain a boundary condition 
for the as yet undetermined harmonic function x. 
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5. Closure of the interior problem 
We ha.ve already explicitly satisfied the boundary condition for w by means of 

the buoyancy layer so that we now only must satisfy the boundary conditions for 
u, v and T.  The radial velocities in all three sublayers are O(E4) and, since u in the 
interior is O(E),  we must have 

U+a+. i i  = 0 at r = a. (5.1) 

Instead of using (5.1) we shall use the equivalent condition that the outer wall be 
a streamline for the meridional motion. Since the motion is axisymmetric, this in 
turn is equivalent to balancing the vertical mass fluxes of theinterior and boundary 
layers. Integrating the continuity equation for each layer across its width yields 

and using (5.1) we obtain 

(5.2) 

The constant Q is easily evaluated by noting that 2naEAQ represents the vertical 
mass transport via the side wall boundary layer, which must be equal and oppo- 
site to the vertical transport via the interior, i.e. 

2naQ = - 2 n J  rwodr. 
0 

Using the expression for wo given in (3.8) we see that 

Q =  - - (  i d /dr )  ($T - 4B)r=a  = - Hv,(a) - vB(a)l* (5.3) 

Turning now to the heat-flux condition and noting that the temperature 
gradient within each sublayer is O(vX/E4) we must require that 

Tor-q-T,-T, = 0 at r = a. (5-4)  

However, by integrating the heat equation across each sub-layer we deduce 

or, using (5.2), (5.3) and (5.4), 

Tm = i([d/drI ( # ~ - $ ~ ) ) r = a  = i ( v ~ ( a ) - v ~ ( a ) ) ,  (5.5a) 

(5.5b) 

We have therefore succeeded in deriving a boundary condition for the interior 
temperature To. According to (3.5) and (3.8), 

(5.6) 

+ PT + T,, = a(v,(a) - vB(a)). 

Tm = Hd/drl (5b - #B) + Xrz 

and therefore, using (5.5a),  
xrs = 0, on r = a. (5.7) 
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Since the harmonic function xis equal to a constant on z = 0 , l  we deduce with- 
out loss of generality that x itself is zero. Consequently the interior fields are 

The expressions (5.8) constitute a good representation for the interior fields for 
stratifications aS smaller than E4 and in particular they are valid in the limit 
crS+O, i.e. for homogeneous fluids. In  fact as = E g  is a critical stratification 
only for the side wall boundary layer and not for the interior flow, which, for 
a8 < Et ,  is primarily controlled by the Ekman layers.? 

In  order to complete the entire solution we must determine the coefficients 
M, N, A,, as well as the function A(z) which enter the expressions for the side 
wall subtayers. 

The boundary conditions for the O( 1) and O(vXEd)  zonal flows are: 

v , + V = O  on r = a ;  (5.9u) 

v,+V,+B=O on r = a .  (5.9b) 

Making use of (4.12), (4.15) and (5.8), we find that (5.9a7b) imply 

M = - +(v,(a) + vB(a)) (5.10) 

and &- Q) [+(a) - v,(a)] + &{(z - +)2 - 8)  [vT(a) + vB(a)l 
1 -  

+ N - -  (nn)-2A,cosnnz = 0. (5.11) 
4,=1 

Consequently N = +&T(a) +%?(a)), (5.12) 

and An = 2[ (  - l)nvT(a) +v&)l, (5.13) 

f A representation of w, w and T uniformly valid over the entire stratification range 
0 < aS < 1 in the inviscid interior of the fluid, which reduces to (5.8) when aSE-i< 1, 
can be shown to be 

[wT(r’) - wB(r’)] dr‘. T = ~.-_____- 

4E*( 1 + uS/8E*) 

Note that as as/@ becomes large, w falls to O(E) (no Ekman suction) while v( r ,  z )  in- 
creases linearly from the plate velocity at the bottom to the plate velocity at the top, 
as predicted in B & P. 
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which completes the specification of the (aS)i-layer and the Et-layer. Finally 
(5.5b), which can be written 

1 m  
- fr(z - 4) [+(a) + &a)] - 2 (nn)-l[( - 1)“ oT(a) +vB(a)] sinnnz 

n=l 

(5.14) 

together with the following Fourier series 

w 1  

1 
nn 

1 = 21;-[(-l)n-l]sinnnz, 

implies that A(2) = 0. (5.15) 

So that, to this order, the buoyancy layer is absent. This is reminiscent of the dis- 
appearance of the buoyancy layer in the strongly stratified regime (as = O( 1)) 
for the case of insulated side walls considered by B & P. Nevertheless, the buoy- 
ancy layer will in general be present, and of course, even here, it will be present 
to higher order. 

6. Conclusion 
The present analysis, together with that of B & P, enables us now to present a 

unified picture of the lineaf dynamics of stratified rotating fluids. 
Two critical stratifications of O(E%) and O(E4) arise and divide the (E, as)- 

space into three distinct regions. For as < E f ,  the fluid, in all regions, acts as if it  
were homogeneous. In particular: (i) its interior dynamics is strongly controlled 
by the Ekman-layer suction, (ii) Stewartson boundary layers of thicknesses E ) ,  
Ei are needed on the vertical walls, and (iii) the TayIor-Proudman theorem is 
valid in the interior. 

As as increases beyond EP, the effects of the stratification are felt most strongly 
within the Stewartson E)-layer and more specifically in the vertical momentum 
balance. When as > E3 the buoyancy force is no longer negligible. This additional 
force upsets the balance between the vertical pressure gradient and the viscous 
force, and splits the E*-layer into two layers: a thinner buoyancy layer in which 
the viscous stresses balance the buoyancy and a thicker hydrostatic layer where 
the buoyancy balances the vertical pressure gradient. The Et-layer is not as 
drastically modified, but some degree of baroclinicity affects its structure. The 
interior dynamics is primarily controlled by the Ekman layers whose existence is 
not affected as US increases beyond Eb. As a result the aS - EQ transition is a 
smooth one as far as the interior fields are concerned. However, except to lowest 
order, the Taylor-Proudman theorem is no longer valid and the zonal velocity 
has a baroclinic ‘thermal wind’ component in addition to its ‘homogeneous’, z- 
independent component. These two parts become comparable as as N EH. When 
US is greater than Et the stratification is sufficiently strong to inhibit the Ekman- 
layer suction. This is essentially the parameter space regioninvestigated in B & P. 
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As the Ekman layers disappear, the hydrostatic (crS)t-layer, which has emerged 
with the Ea-layer for crS - Ei ,  penetrates into the interior of the fluid, which then 
becomes controlled by viscous-diffusive processes. 

Homogeneous Weakly stratified Strongly stratified 
fluid ~f fluid E f  fluid US+ Stratification 

I I 

Buoyancy layer of thickness (,S)-tEt 

Hydrostatic layer of 
thickness (us)€ 

Ef - layer 

Interior controlled by Interior controlled 
Ekman-layer suction by viscous-diffusive 

Features 
of the 
dynamics 

Ei  - layer 

Ekman layers are 

absent to lowest 
order 

-------- Ekman layers 

FIGURE 1. Schematic description of the elements of the dynamics of rotating fluids for 
various stratifications. 

The above conclusions are summarized in figure 1, in which the modifications 
of the various features of the dynamics of stratified rotating fluids are sche- 
matica1l.y represented as the stratification cr8 is increased. 
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